
aConCorde: towards a proper concordance
for Arabic

Andrew Roberts, Dr Latifa Al-Sulaiti and Eric Atwell
School of Computing

University of Leeds

LS2 9JT

United Kingdom

{andyr,latifa,eric}@comp.leeds.ac.uk

July 12, 2005

Abstract

Arabic corpus linguistics is currently enjoying a surge in activity. As
the growth in the number of available Arabic corpora continues, there is
an increased need for robust tools that can process this data, whether it be
for research or teaching. One such tool that is useful for both groups is the
concordancer — a simple tool for displaying a specified target word in its
context. However, obtaining one that can reliably cope with the Arabic lan-
guage had proved extremely difficult. Therefore, aConCorde was created
to provide such a tool to the community.

1 Introduction

A concordancer is a simple tool for summarising the contents of corpora based
on words of interest to the user. Otherwise, manually navigating through (of-
ten very large) corpora would be a long and tedious task. Concordancers are
therefore extremely useful as a time-saving tool, but also much more. By isolat-
ing keywords in their contexts, linguists can use concordance output to under-
stand the behaviour of interesting words. Lexicographers can use the evidence
to find if a word has multiple senses, and also towards defining their meaning.
There is also much research and discussion about how concordance tools can
be beneficial for data-driven language learning (Johns, 1990).

A number of studies have demonstrated that providing access to corpora
and concordancers benefited students learning a second language. Just as lexo-
graphers and linguists can find insights into grammatical structure by studying
concordance output, so can language learners (Dodd, 1997). Cobb et al. (2001)
detailed the improved rates of vocabulary acquisition when using a software
tool of which a concordancer was a major component, for example.

The simplicity and usefulness of concordancers is such that they should be a
valuable tool for any linguist. Unfortunately, as is the general trend within cor-
pus linguistics, research priorities have focused on European languages. This
has meant that language resources for other widely spoken languages such as

1



Arabic are somewhat lacking. For example, when this project began, to the best
of our knowledge, there were no readily available concordancers that function
correctly with the Arabic language. Considering Arabic is spoken by approx-
imately 250 million people, it was felt that Arabic linguists deserved such a
simple and useful tool. Thus, the aConCorde project was created.

2 Why is Arabic Concordance Hard?

One would have to assume that the reason there are few Arabic concordance
tools available is because it is considerably more difficult to process than the
other languages, such as European languages. However, this is simply not the
case nowadays. The two most commonly perceived difficulties with Arabic
language processing are:

1. Unique Arabic script. The cursive nature of the script means that letters
are represented differently depending on whether they occur at the be-
ginning, middle or end of a word. Characters within words are always
joined, and never written individually.

2. Arabic is written from right-to-left, as opposed to the majority of other
languages that are, of course, written left-to-right.

The process of transliteration is a common approach to resolving these issues.
The Buckwalter system (amongst others) will convert Arabic script to an equiv-
alent based on the Roman alphabet (Buckwalter, 2002). It also means that the
text orientation is also converted. From a computational perspective, this has
historically been a necessary step, due to computers long being restricted to
ASCII (or similar) character sets (i.e., Roman alphabets). However, thanks to
the popularity of the Unicode standards since the early 1990s, most modern
operating systems and products support multi-lingual text encoding, and also
the fonts to display Unicode characters are increasingly common. Implementa-
tion of bi-directional text components are also part of most modern operating
systems.

Due to these developments, there is little reason why existing concordance
tools have not been adapted to take advantage of the above technologies in
order to render the aConCorde project redundant even before it had begun!
There was one implementation that sought to provide multi-lingual concor-
dancing, called xconcord (Ogden and Bernick, 1996; Boualem et al., 1999), de-
veloped at the Computing Research Laboratory, New Mexico University. The
CRL produced their own graphical components that were able to display Uni-
code text and they worked successfully at displaying Arabic text. Despite xcon-
cord being ahead of its time when first developed in 1996, it did not become
a mainstream application. Although it would still be a useful tool today, it is
hindered due to it being written for the Sun Solaris platform. This is not widely
used, especially by the average linguist, as this system is typically used on ex-
pensive high-powered workstations and servers. Therefore, it was not possible
to experiment with it as resources required were not available. Development
ceased many years ago, but the program can be downloaded1.

1http://crl.nmsu.edu/software/

2



Where the real difficulty lies in Arabic concordance is not the displaying
of results, but the inadequacy of searching for Arabic word stems. Commonly
when performing concordance searches, the user wants to see the usage of
words all from the same stem. Concordancers typically offer wildcard searches,
for example, perform* (where the asterisk means any character zero or more
times) would match perform, performs, performer, performers, performing, etc. How-
ever, with Arabic, the morphology is substantially more complex than English.
Arabic words are derived from a root of three consonants. Each root has a
set of patterns which can add additional characters as either an affix, a prefix
or even infix. An example would be the transliterated Arabic root ktb (write).
Patterns associated with that root can produce words semantically linked, in-
cluding verbs like kataba (he wrote) and naktubu (we write), and many nouns
like kitAb (book), maktuub (letter) and maktaba (library)2. However, performing
a wildcard search like *k*t*b* would return lots of matches, many of which are
not associated with the ktb root, but also happen to have the same consonants.

Another issue is that written Arabic does not contain vowels — the main
exception being the Qur’an. This leaves a great deal of ambiguity that is only
resolved when looking at the context of a given word. An English example
may be ‘fr’ that could be for, fir, fur, far, four, fear, fair, fire, afar, afore, etc. Yet,
if you can only search for ‘fr’ even though you are only interested in ‘far’, it
would clearly be frustrating to have to read through irrelavant results. It is
unlikely that these specific issues will be resolved by generic concordancers.

3 Arabic Concordance with WordSmith, MonoConc,
Xaira and aConCorde

For the task of concordance, the majority of people would turn to WordSmith
(Scott, 2004) or MonoConc (Lawler, 2000). Both are commercial products and
are well established tools for text analysis. They are only available on the Mi-
crosoft Windows platform. Xaira (Bernard, 2004) is a relative newcomer but
stems from the well-known SARA toolkit. This section primarily seeks to com-
pare the ability of retrieving concordance output from Arabic corpora using
the established tools.

The corpus being used to experiment on is the newly released Corpus of
Contemporary Arabic (CCA) (Al-Sulaiti, 2004). This corpus is annotated ac-
cording to the TEI standards using XML markup, and all files are encoded in
the 8-bit Unicode standard, UTF-8.

3.1 MonoConc

Developed by linguist Michael Barlow for language teachers and researchers,
MonoConc has proved to be very popular for language analysis, as it comes
with many additional features, such as collocation discovery and tag-sensitive
searches . On the MonoConc website3, it states: “Some users have been using

2Many sources cover Arabic grammar, however, issues about Arabic and computing are well
introduced by Khoja (2003) and de Roeck (2002)

3http://www.monoconc.com

3



Figure 1: Arabic concordance using MonoConc. Discovered collocates are un-
derlined, although they should not be there! For unknown reasons the text in
the top pane did not display using Arabic fonts.

MonoConc/Pro with Arabic. I don’t have any details of their procedures." Unfor-
tunately, despite initial optimism, using Arabic texts with MonoConc was not
totally successful. Issues that arose during experiments were:

Unicode support it appeared that MonoConc does not support texts encoded
in UTF-8. It was therefore necessary to convert texts to the Windows
Arabic Codepage-1256 before the program would display the Arabic text
correctly.

Incorrect concordance order perhaps the most significant problem for perform-
ing Arabic concordance is that the output is in the wrong order! (See fig-
ure 1.) Due to the right-to-left nature of Arabic, MonoConc does not take
this into account when displaying results. For an English reader, it would
be equivalent to seeing the output: “on the mat. [sat] The cat”, rather than
“The cat [sat] on the mat.” (where the bracketed word is the target word.)
This was observed by Hoogland during the Nijmegen Dutch-Arabic Dic-
tionary Project, “This seemed a serious shortcoming in the beginning, but soon
we experienced that we got used to this very quickly.” (Hoogland, 2003) Hoog-
land had to get used to it because it was better to have broken concordance
rather than none at all. It is clearly far from ideal — it would be unlikely
to be tolerated for teaching purposes as it would confuse the learner.

Admittedly, when the concordance results are saved to a file, and this
file is viewed with a text editor, the ordering issue disappears. However,
this output has its own problems, the first being that viewing is not as

4



nice as there is no alignment around the target word. Secondly, Mono-
Conc adds extra information before each match, which makes the output
somewhat noisy.

‘Noisy collocates’ a strange artifact appeared in the concordance output when-
ever a match included a discovered collocate. It was default behaviour
for the software to highlight found collocates. However, the only prob-
lem was that these collocates were actually inserted into the wrong po-
sition within the concordance context, and as a result caused a certain
amount of interference. This was remedied by turning off the option to
highlight collocates, after which the highlighted words would then van-
ish from the context.

Addition of unwanted terms despite a simple search term being submitted
within MonoConc, sometimes it included matches within the results that
are not equal to the target word. This behaviour appears to be random as
it only occurs with some words and not others.

3.2 WordSmith

WordSmith was first released in 1996 and is still developed by linguist Mike
Scott. WordSmith is currently at version 4 and sports three tools: Wordlist, Key-
word and Concord. The latter is the one of interest for this report, but it should
be obvious what the others do. The documentation notes that WordSmith sup-
ports Unicode which obviously lends itself to the analysis of the CCA. A demo
version is available, which was used for this report. It retains all the function-
ality of the full version, but significantly limits the number of results returned
when performing queries.

A degree of success was achieved when using WordSmith, in that it was
possible to get the tool to display Arabic script — which means its Unicode
support was working. Unfortunately, it suffered the common issue of display-
ing the prior and posterior contexts in the opposite order required for a right-
to-left language. The matches are displayed in two columns, the left column
must be read from right-to-left first, and then the reader can continue with the
second column, which begins with the target word, followed by the rest of the
context (see figure 2).

3.3 Xaira

Xaira is a new tool designed to supercede SARA — an application for text anal-
ysis on the British National Corpus. Xaira is no longer tied to the one corpus,
instead opting for a more generalised approach. It takes advantage of Unicode
and XML technologies to help achieve this (Bernard and Dodd, 2003). At the
time of writing, its first version is still in beta testing, but will be released as a
full product in the near future. It can perform complex searches as it can filter
results according to the XML annotation. For example, a spoken corpus is com-
monly annotated with information such as the gender of the current speaker.
Therefore, Xaira is able to perform searches based on male language usage and
compare it to female usage.

Xaira does not suffer the same problem as WordSmith or MonoConc in that
it displays the entire concordance in the correct order (see figure 3.) However,

5



Figure 2: Arabic concordance as displayed by WordSmith.

in order to get to the point of looking at results, the user must go through a
relatively long procedure using an additional tool to prepare the source texts
into the format expected by the software.

3.4 aConCorde

aConCorde is neither a commercial product nor a research project. It was (and
still is) developed by Andrew Roberts, a PhD. student, in his spare time. In
terms of features, it is relatively basic when compared to the systems already
discussed in this section. However, due to the design aim being to ensure it
was as multi-lingual as possible, with extra emphasis on the Arabic language,
it will be no surprise that it works fine for right-to-left languages (see figure 4).

An additional feature that is useful for Arabic users is the provision of an
Arabic interface. Not only does this provide Arabic translations for all the
menus, buttons etc., but even switches the entire application layout to right-
to-left. In theory it is relatively simple to add additional language support,
however, willing translators are not easy to come by! Further details of aCon-
Corde are described in Section 4.

3.5 Discussion

The aConCorde project was started solely because it had not been possible to
find a concordancer to correctly work with Arabic. The Xaira software has been
demonstrated to work with Arabic too, so it could be argued that there was no
need for aConCorde in the first place. Unfortunately, Xaira was only discov-
ered after development had already begun! Initially, it would seem that Xaira
has now rendered aConCorde redundant, however, after pondering this very
thought, it was realised that there is a market for both. Xaira is a sophisticated
package, but with increased power and flexibility comes additional complexity.
It certainly lends itself for research purposes in performing complex queries for
fine-grained language analysis. However, it is questionable if it is quite as ap-
propriate in the language teaching environment. Teachers and students may
be put off by the complex interface and the amount of effort just to get a con-
cordance output. aConCorde on the other hand is relatively simple to get up
and running: literally select a corpus to open, then either type in your query

6



Figure 3: Example of Xaira producing correct concordance output.

Figure 4: Example of aConCorde displaying Arabic concordance correctly.

7



or select word from the word frequency panel and you will be presented with
your results. This approach could well be more suited to this audience. aCon-
Corde does provide special searches specific to Arabic analysis in the form of
root/stem-based concordance and this is not found in any other package. Also,
the aConCorde software is free to use by anyone (as is the source code).

With respect to the other tools in the survey, better support for right-to-left
languages would obviously be greatly appreciated. If MonoConc had this sup-
port (as well as Unicode) then it would probably be the best all-round product
in terms of the balance between features and ease-of-use, for both research and
teaching purposes.

4 The aConCorde System

The aConCorde project was originally conceived as a prototype system to illus-
trate just how easy it is to not just write tools to support the Arabic language,
but for practically any language. Within one afternoon, a simple multi-lingual
concordance engine was programmed, and during the following afternoon, a
basic graphical user interface was added. The user was able to switch between
a native English or Arabic interface. All Arabic text was displayed correctly,
and all concordance was output as expected by an Arabic reader, and there
was no transliteration required for the input or output.

4.1 aConCorde features

Subsequent improvements and extensions have allowed the project to mature
and has produced a more reliable and useful tool. The aConCorde system con-
tains a number of features that allow it to stand out from competing products:

• Full Arabic support (no need to transliterate to Roman alphabet before
concordance).

• English and Arabic native interfaces.

• Multi-platform — can run on most major operating systems.

• Supports an extensive range of character encodings, including Unicode
(UTF-16 and UTF-8), Windows Arabic (CP1256), IBM Arabic (CP420),
MacArabic, ISO Latin/Arabic (ISO 8859-6) and ASCII encoding.

• Multi-format support allows you to load text files, XML files, HTML files,
RTF files and MS Word files directly.

• Can save results either as a plain text file, or HTML file that can keep the
alignment of the concordance.

• Word frequency analysis.

• Concordance can be sorted on left or right contexts.

• A range of query options: key-word, phrase, proximity, boolean, wild-
card and Arabic root/stem queries.

8



• aConCorde is freeware and open-source (released under the General Pub-
lic License.)

The aConCorde system is built using the Java programming language. Java al-
lows the programmer to produce software for the most popular operating sys-
tems without any extra effort, which is why aConCorde will run correctly on
Microsoft Windows, Linux or Mac OS (and others) providing the user has the
Java Runtime Environment installed. It is important to note that many Arabic
tools were reliant on Arabic Windows (a localised version of Microsoft Win-
dows with support for Arabic script and right-to-left interfaces). aConCorde
will of course run on standard Windows or Arabic Windows.

The Java platform is also one of the reasons why producing a multi-lingual
capable application was simple. Internationalisation features were an impor-
tant feature during the design of Java. For example, Java’s internal mechanism
to store text uses the Unicode standard, and all visual components have in-
built support for left-to-right or right-to-left languages (some components can
even cope with the Japanese top-to-bottom text orientation!)

4.2 Root- and stem-based concordance

As discussed in Section 2 the wildcard searches that make it reasonably simple
for stem-based concordance in Western languages do not scale universally. To
recap, an Arabic root is typically a sequence of 3 consonants (although two,
four and five consonant roots exist) that is the seed from which words are de-
rived. For example the root ktb (write) has stems derived such as katab (write)
and iktatab (register). From the stem you can derive the various morphologi-
cal forms using affixes, infixes and suffixes, e.g., Taktub (she writes), yaktub (he
writes), aktub (I write), and so on.

4.2.1 Buckwalter’s morphological analyser

Buckwalter’s morphological analyser is distributed by the LDC and has been
used by many projects including the LDC’s Arabic Treebank project (Maamouri
et al., 2004). It consists of 3 lexicons: affixes, suffixes and stems) and 3 sets of
rules that specify how these lexicons can be intersected to derive actual Arabic
word tokens. The analyser reads in a file and processes each word in isolation.
By utilising the lexicons and rules, it can break down the input token and pro-
duce all possible valid morphological solutions. In the cases where there are
more than one solution, it doesn’t offer any hints as to the most probable.

The databases and the analyser work with Buckwalter’s transliteration sys-
tem. Until recently, direct input/output of Arabic characters in computer sys-
tems has not been trivial. Buckwalter’s system is a one-to-one mapping be-
tween the Roman alphabet and the Arabic alphabet. It’s not always intuitive
because there isn’t a nice mapping available, and so it uses some punctuation
symbols to represent Arabic letters (e.g., & is equivalent to Waw with Hamza
above). Conveniently, there is also a one-to-one mapping to the Unicode char-
acter encoding standard.

There are many transliteration systems in use although there is no single
official transliteration standard. Yet, Buckwalter transliteration is not recog-
nised within the Arabic linguistic community at large (Beesley, 2003). This is

9



Figure 5: Example of root/stem selection within aConCorde using Buckwal-
ter’s stem database.

due to it being relatively modern, and also being aimed at the computational
processing of Arabic. Its use of Latin punctuation symbols for Arabic letters is
clearly less intuitive to a human reader than some of the more phonetic-based
transliteration systems. For example, Buckwalter uses ‘$’ for Sheen, whereas
others, such as Qalam (Heddaya, 1985), use ‘sh’.

4.2.2 Buckwalter and aConCorde

If a user wished to find concordance for all words derived from the stem katab,
then this is clearly not feasible with the wildcard search approach. The alter-
native is to search for a manually hand-crafted list of derived words. How-
ever, with aConCorde, this burden is taken away from the user. Using the
databases of Buckwalter’s morphological analyser, it’s possible to provide the
roots and stems a priori to the user. They can then select to search for one or
more stems, or even everything within a given root. Buckwalter’s databases
were converted from Buckwalter’s transliterion alphabet to Unicode so that
the root/stems are displayed in native Arabic (see Figure 5).

There is a limitation here in that the user is always presented with the full
database, even if many of the terms are not present within the corpus being
currently analysed. It would of course be preferable, when loading an Arabic
corpus to analyse each word and determine its stem and root, and then only
have these entries visible. However, stemming in Arabic is difficult due to the
complex morphology. It is quite easy to remove affixes that were in fact part of
the word, for example. That being said, there are stemmers that exist, such as
Khoja’s stemmer used in her APT tagger Khoja (2003).

10



4.3 Similar terms and word clusters

A novel feature to aConCorde is the use of similarity functions. These are bor-
rowed from the information retrieval domain. They are typically used to find
similar documents based on the terms contained within. In aConCorde, its
low-level model, from an IR perspective, has sentences as ‘documents’. The
concordancer has a set of term-frequency vectors and these can be plotted into
a vector space. During the concordance, the user can choose their search term,
select a sample line from the concordance and its term-vector will be compared
to the others (using cosine similarity) and then be presented with similar sen-
tences from within the corpus.

4.3.1 Clustering

The principle of clustering algorithms is to divide a set of objects into clusters.
By using a given measure of similarity, a good clustering algorithm will place
objects that are similar into the same cluster, whereas dissimilar ones are clus-
tered into different groups. It has the advantage of being truly unsupervised,
i.e., requires no prior knowledge about the data being clustered. Clustering is
a broad subject and has been applied in many domains. Within computational
linguistics, it has been used successfully in syntactic (Finch and Chater, 1992;
Hughes, 1994) and semantic (Ibrahimov et al., 2001) classification and informa-
tion retrieval systems.

Clustering is a mathematical procedure that merges points in a vector space
that are close to each other. To cluster words, a method is required to represent
a given word into a vector to be plotted. The method used by Roberts (2002)
is to record collocation frequencies of a given content word relative to function
words, for a specified window size. This data can be converted simply to a
vector and thus ready to be clustered.

There are a range of clustering algorithms available. Hierarchical agglom-
erative algorithms are well suited to word clustering. Each word in the vec-
tor space start off as individual one-object clusters. The algorithm evaluates
each pair of points to find the closest, which are deemed the most similar,
and merges them to a single cluster. How algorithms compute the distances
between clusters is typically the differentiating factor (Everitt, 1993). Group
Average and Ward’s Method are good performers in this task (Roberts, 2002;
Zupan, 1982). The results come back as a set of clusters each with a varying
number of words within. A nice feature of hierarchical methods is that you
can profile the clustering process and generate a dendogram that reveals how
the cluster was formed, e.g., which terms were the most similar.

4.3.2 Clustering and aConCorde

aConCorde provides a means for the user to interface external clustering code
and display the output within the concordancer itself. This has only been in-
troduced recently and is still very crude. However, it is worth mentioning as it
shows yet more potential features that could be added to concordance software
to enable alternative perspectives and analyses of a corpus.

The term similarity and clustering features were implemented primarily
for the use of concordance within the learning environment. Concordance has

11



Figure 6: An example of a cluster visualised as a dendogram.

aConCorde_0.8-2.png not found!

Figure 7: Cluster view within aConCorde.

12



already proved successful within the classroom, but this concordancer can pro-
vide additional information to the user to assist in building vocabularies and
grammatical patterns.

4.4 aConCorde limitations

At the time of writing, aConCorde is still limited in terms of features compared
to the more established products on the market.

• Mark-up: aConCorde is generally ignorant of mark-up annotation within
a corpus. Whilst it can successfully parse XML and HTML files, it essen-
tially works by filtering out the tags to isolate the content. If a corpus
were annotated with part-of-speech tags aConCorde, would not recog-
nise them and would be treated as ‘words’, as if part of the text itself.
Heavily annotated corpora will therefore benefit from some pre-processing
to strip away such mark-up.

• Full context: aConCorde doesn’t have the functionality to allow the user
to see the full context of a selected concordance item. The current display
is to see the word within the sentence it was found, and that is the largest
scope currently implemented.

• Arabic root/stem database is exhaustive rather than reflecting the tokens
available in the currently loaded corpus.

• Clustering integration is currently very crude and takes a long time to
gather and display the data.

• Computational resources: aConCorde can be resource intensive with large
datasets. Whilst the software utilises extremely scalable indexing tech-
nologies like those found in modern databases, loading corpora or gath-
ering the concordance for highly frequent words take time.

Naturally, aConCorde will continue to progress. These limitations are high
priority issues and will be addressed in the near future.

5 Conclusion

This paper has summarised many of the issues regarding the difficulty of Ara-
bic concordance. The aConCorde project attempts to resolve some of the core
issues, e.g., interactive searching that actually displays the Arabic text correctly.
With that foundation firmly laid, the future direction can focus on important
problems, for example, improving and creating more novel approaches to in-
tuitive morphological searching. It is hoped that the established concordance
tools will realise the demand for products that cope with Arabic script, and
adapt their software accordingly.

References

Al-Sulaiti, Latifa (2004) Designing and Developing a Corpus of Contemporary Ara-
bic. Master’s thesis, School of Computing, University of Leeds, UK.

13



Beesley, Kenneth (2003) Xerox Arabic Morphological Analyzer Surface-Language
(Unicode) Documentation. Xerox Research Centre Europe.

Bernard, Lou (2004) BNC-Baby and Xaira. In Proceedings of the Sixth Teaching
and Langauge Corpora conference, p. 84, Granada.

Bernard, Lou and Dodd, Tony (2003) Xara: an XML aware tool for corpus
ssearching. In Proceedings of the Corpus Linguistics 2003 Conference, Dawn
Archer, Paul Rayson, Andrew Wilson and Tony McEnery, eds., volume 16,
pp. 142–144, UCREL, University of Lancaster.

Boualem, Malek, Leisher, Mark and Ogden, Bill (1999) Concordancer for Ara-
bic. In Arabic Translation and Localisation Symposium, Tunis, URL http:
//crl.nmsu.edu/~mleisher/concord.pdf.

Buckwalter, Tim (2002) Buckwalter Arabic transliteration. URL http://www.
qamus.org/transliteration.htm.

Cobb, Tom, Greaves, Chris and Horst, Marlise (2001) Can the rate of lexical
acquisition from reading be increased? an experiment in reading french with
a suite of on-line resources. In Regards sur la didactique des langues secondes,
P. Raymond and C. Cornaire, eds., Éditions Logique, Montréal.

de Roeck, Anne (2002) Arabic for the absolute beginner. ELRA Newsletter, 7(1).

Dodd, Bill (1997) Exploiting a corpus of written german for advanced language
learning. In Teaching and Language Corpora, Anne Wichmann, Steven Fligel-
stone, Gerry Knowles and Tony McEnery, eds., pp. 131–145, Longman, Lon-
don.

Everitt, B. (1993) Cluster Analysis. Edward Arnold, London, 3rd edition.

Finch, Steve and Chater, Nick (1992) Bootstrapping syntactic categories. In Pro-
ceedings of the 14th Annual Meeting of the Cognitive Science Society, pp. 820–825,
Hillsdale, New Jersey.

Heddaya, Abdelsalam (1985) Qalam: A convention for morphological arabic-
latin-arabic transliteration. URL http://eserver.org/langs/qalam.
txt.

Hoogland, Jan (2003) The Nijmegen Arabic/Dutch dictionary project —
using the concordance program. URL http://www.let.kun.nl/wba/
Content2/1.4.6_Concordancing.htm.

Hughes, John (1994) Automatically Acquiring a Classification of Words. Ph.D. the-
sis, School of Computing, University of Leeds.

Ibrahimov, O, Sethi, I and Dimitrova, N (2001) Clustering of imperfect tran-
scripts using a novel similarity measure. In Proceedings of the SIGIR’01 Work-
shop on Information Retrieval Techniques for Speech Applications.

Johns, Tim (1990) ‘From printout to handout: Grammar and vocabulary teach-
ing in the context of data-driven learning’. Computer Assisted Language Learn-
ing, 10, pp. 14–34.

14



Khoja, Shereen (2003) APT: An Automatic Arabic Part-of-Speech Tagger. Ph.D. the-
sis, Computing Department, Lancaster University, UK.

Lawler, John (2000) Review of MonoConc Pro 2.0 concordancing software. LIN-
GUIST, 11(1411).

Maamouri, Mohamed, Bies, Ann, Buckwalter, Tim and Mekki, Wigdan (2004)
The penn arabic treebank: Building a large-scale annotated arabic corpus.
In NEMLAR International Conference on Arabic Language Resources and Tools,
Cairo, Egypt.

Ogden, Bill and Bernick, Philip (1996) Oleda: User-centered Tipster technol-
ogy for language instruction. In Proceedings of the Tipster Pharse II 24 Month
Workshop, VA, USA.

Roberts, Andrew (2002) Automatic acquisition of word classification using dis-
tributional analysis of content words with respect to function words. Techni-
cal report, School of Computing, University of Leeds.

Scott, Mike (2004) WordSmith Tools 4.0. URL http://www.lexically.net/
downloads/version4/html/index.html.

Zupan, Jure (1982) Clustering of Large Data Sets. John Wiley and Sons, Chich-
ester.

15


